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Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance
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We show that a self-oscillatory system, driven at two frequencies close to that of the unforced system
~resonance 1:1!, becomes phase locked and exhibits two equivalent stable states of opposite phases. For
spatially extended systems this phase bistability results in patterns characteristic for real order parameter
systems, such as phase domains, labyrinths, and phase spatial solitons. In variational cases, the phase-locking
mechanism is interpreted as a result of the periodic ‘‘rocking’’ of the system potential. Rocking could be tested
experimentally in lasers and in oscillatory chemical reactions.
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The nature of patterns observed in dissipative nonlin
systems is deeply related with the degrees of freedom
lowed to the system’s phase. From this viewpoint one
distinguish between phase invariant and phase-locked
tems, depending on whether the system’s phase is free or
attracted towards certain discrete values. The mathema
description of both types of systems is accordingly differe
Phase invariant systems can be described by a complex
~the order parameter!, and the complex Ginzburg-Landa
and the complex Swift-Hohenberg equations are prototyp
models for them@1#. Among phase-locked systems, esp
cially relevant are those in which the phase is allowed to t
only two values~differing by p) so that the system suppor
equivalent states of opposite signs. Hence, apart from a
stant phase factor, they can be described by a real o
parameter. Universal models for such systems are the
Ginzburg-Landau and the real Swift-Hohenberg equati
@1#. A major difference between systems with complex ord
parameter~complex systems in the following! and systems
with real order parameter~real systems! is the kind of defects
supported by them. Vortices@2# are commonplace in com
plex systems, whereas they are not allowed in real o
Similarly, real systems support domain walls@3# which on
the contrary are unstable and decay into arrays of vortice
complex systems. Typical patterns of complex systems
ensembles of vortices and traveling waves, usually disp
ing a high degree of disorder. On the contrary, real syste
tend to exhibit much more structured patterns, such as str
~or labyrinths!, hexagons, domain walls, and dark-ring so
tons.

Here, we address the problem of how to ‘‘convert’’ a
initially complex system into a real-like one via forcing in
1:1 resonance. Apart from its interest from a fundamen
viewpoint, this transformation could be useful for the ex
tation of phase domains and phase domain solitons in la
and other phase invariant nonlinear optical systems, wh
such structures have potential applications for parallel in
mation processing@4#.

*Email address: german.valcarcel@uv.es
†Email address: kestutis.staliunas@ptb.de
1063-651X/2003/67~2!/026604~4!/$20.00 67 0266
r
l-
n
s-
is
al

t.
ld

al
-
e

n-
er
al
s
r

s.

in
re
y-
s

es

l
-
rs
re
r-

Although the mechanism we describe below is genera
able to other classes of complex systems, we focus on th
displaying a spontaneous transition between a steady an
oscillatory state, both spatially uniform. This transition
technically termed a homogeneous Hopf bifurcation, a
systems displaying it are complex since the phase of
oscillations is not fixed. A classical way to break this pha
invariance is to submit the system to aperiodic temporal
forcing. This kind of forcing admits a universal descriptio
when the system is operated near the oscillation thresh
and forcing acts on an:m resonance, defined by the relatio
ve5(n/m)(v01n) between the external forcing frequenc
ve and the natural frequency of oscillationsv0, wheren/m
is an irreducible integer fraction andn is a small mistuning.
In such case, the slowly varying complex amplitude of t
oscillations A ~the order parameter! verifies the following
equation@5#:

] tA5~m1 in!A1~11 ia!¹2A2~11 ib!uAu2A

1F m~A* !n21, ~1!

where F is proportional to the amplitude of forcing,¹2

5]x
21]y

2 , andA, and the space coordinates (x,y) have been
normalized in order to make unity the diffusion and the sa
rating nonlinearity coefficients. In Eq.~1! all parameters are
real and adimensional;m is excitation parameter~propor-
tional to the increase of the control parameter from its va
at the bifurcation!, a is the dispersion coefficient, andb is a
nonlinear frequency shift coefficient. In the absence of fo
ing (F50) Eq.~1! reduces to the complex Ginzburg-Landa
equation~CGLE!, which is the universal description of sel
oscillatory systems close to threshold@1,5,6#. Actual systems
described by the CGLE are, e.g., self-oscillatory chemi
reactions@7# and nonlinear optical cavities, such as lasers@8#
and optical parametric oscillators@9#. A physical quantity,
such as a concentration in a chemical reaction or the ele
field in a laser, can be written in terms of the order parame
as Re„A(x,y,t)exp@2i(v01n)t#….

Next, we demonstrate that a self-oscillatory~complex!
system can be transformed into a reallike one via reson
©2003 The American Physical Society04-1
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forcing. The idea is to drive the system with a spatially u
form, amplitude modulated forcing almost in resonance w
the natural frequency of oscillations, which is a generali
tion of the classical periodic forcing in a 1:1 resonance t
quasiperiodic case. In particular, we consider a forc
whose amplitude is slowly modulated in time in the for
F5F0cos(Vt). Note that this is a two-frequency forcin
since the actual forcing consists of two frequencies,ve6V
@10#. In this case, and close to the self-oscillation thresho
the system dynamics is governed by Eq.~1! with m5n51
~1:1 resonance! and F5F0cos(Vt) @11#. Upon definings
5sgn(m), n85n/umu, A85A/Aumu, t85umut, (x8,y8)
5Aumu(x,y), v5V/umu, F5F0 /umu3/2 ~which is taken as
real and positive without loss of generality!, and removing
the primes for the sake of not overburdening the notati
Eq. ~1! becomes the following ac-driven CGLE:

] tA5~s1 in!A1~11 ia!¹2A2~11 ib!uAu2A1Fcos~vt !,
~2!

which is the object of our study@12#.
In order to visualize the effect of the two-frequency for

ing, we consider first the case of spatially uniform ord
parameter and vanishinga, b, and n. Then the forced
CGLE ~2! is variational,dA/dt52]V/]A* , with potential
V52suAu21 1

2 uAu422 Fcos(vt)ReA. In the absence o
forcing (F50), V is isotropic on the plane ReA2Im A; for
s511 (m.0), V has the shape of a sombrero, displaying
local maximum at the origin~the unstable trivial stateA
50) and a degenerate minimum along the circleuAu251
~the spatially uniform steady state with arbitrary phase!. For
a constant driving term (FÞ0, v50; the classical periodic
driving in a 1:1 resonance! V becomes ‘‘tilted’’ and exhibits
an isolated minimum on the axis ReA. Finally, for a periodic
forcing term (FÞ0, vÞ0; the considered two-frequenc
forcing! V undergoes a periodic tilting, or ‘‘rocking,’’ aroun
the axis ImA and the system state vectorA5(ReA,Im A)
oscillates back and forth across that axis. Since fors511
the origin is repulsive,A avoids in principle, that point and
two equivalent trajectories~differing in the sign of ImA) are
allowed. Thus, two equivalent oscillating states of oppos
phases are expected and, in principle, the initially comp
system is transformed into a reallike system. Given the ‘‘m
chanical’’ effect that the two-frequency forcing has on t
system’s potential, and in order to clearly identify it again
the usual~single-frequency! periodic forcing~corresponding
to v50), we propose to term the forcing mechanism
’’rocking.’’

Next, we show rigorously that the previous pictorial im
age holds even in the more general, nonvariational case
consider the limit of ‘‘strong and fast’’ rocking (F5 f v,v
@1) and keepf and the rest of parameters asO(v0) quan-
tities @13#. This allows~i! to separate the slow time scalet of
the unforced system from the fast time scalet5vt of rock-
ing (] t→v]t1] t), and ~ii ! to seek solutions to the force
CGLE ~2! in series of v of the form A(x,y,t)
5A0(x,y,t,t)1O(v21). At orderv, we find

A0~x,y,t,t!5 f sin~t!1 ia~x,y,t !, ~3!
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wherea(x,y,t) does not depend on the fast time scale. T
evolution equation fora(x,y,t) is found as a solvability con-
dition at orderv0 of the asymptotic expansion, which read

] ta5~l1 iu!a1~11 ia!¹2a2~11 ib!uau2a

1g~11 ib!a* , ~4!

where l5s22g, u5n22gb, and g5 1
2 f 25 1

2 (F/v)2 is
the rocking parameter. To the leading order the actual or
parameter readsA(x,y,t)5A2g sin(vt)1ia(x,y,t) @Eq. ~3!#.
Note that the one-rocking-period average of the order par
eter ^A(x,y,t)&[1/T* t

t1Tdt8A(x,y,t8). ia(x,y,t), T
52p/v, in this fast rocking limit.

Equation~4! is a CGLE with phase sensitive gain~last
term!, which favors a phase locking as it imposes the discr
phase symmetrya→2a. Thus, two equivalent states of os
cillation of opposite phases exist. We note that Eq.~4! is
similar to that describing oscillatory systems periodica
forced at twice their natural frequency of oscillation~2:1
resonance!, i.e., Eq.~1! with m51 andn52 @5#.

For the sake of simplicity, we limit in the following to the
caseb50:

] ta5~s22g1 in!a1~11 ia!¹2a2uau2a1ga* . ~5!

Equation~5! has two relevant spatially homogeneous so
tions ~apart from the trivial onea50) given by a
56uauexpiw, uau25s22g1Ag22n2, and sin 2w5n/g.
Note that below the bifurcation (m,0, i.e., s521) uau2

,0, so that rocking requiress511(m.0) to be effective.
Hence, we consider in the followings511. These ‘‘rocked
states’’ have equal intensitiesuau2 but opposite signs. They
exist for unu,g, 1

3 (21A123n2) that requiresn2,1/3.
The linear stability analysis of both the trivial and th
rocked states of Eq.~5! shows that they are unaffected b
pattern forming instabilities foran<0. Foran.0 they can
become unstable against spatial modulations of wave num
k given by aktri v

2 5n2sgn(a)g/A11a2 and akrock
2 5n

2sgn(a)A(122g)21n2/A11a2, respectively~details will
be given elsewhere!. Thus, foran<0 there exists bistability
between the two oppositely phased spatially homogene
rocked states, which enables the existence of domain w
connecting them. Outstandingly in the variational casea
5n50) two kinds of such solutions to Eq.~5! for s511
are analytical in one spatial dimension, and are known
Ising ~I! and Bloch~B! walls @14#

aI~x!56g tanh~gx/A2!, ~6!

aB~x!56@g tanh~A2g x!6 iA125g sech~A2g x!#,
~7!

whereg5A12g. The Ising wall~6! shows up as a dark line
~whereaI50) and is stable for 1/5,g,1. The Bloch wall
~7!, a gray line, is stable for 0,g,1/5. At g51/5 a bifur-
cation takes places and an Ising-Bloch transition is observ
Both structures persist in nonvariational cases, at least
smalla andn, and the transition between them still occurs
4-2
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g51/5 @14#. Differently from the variational case, Bloc
walls now move with a velocity proportional to their chira
ity @14#.

These analytical predictions were tested against the
merical integration of the forced CGLE~2!, with s511
@15#. In order to give evidence of the robustness of rocki
we show next results for a rocking frequencyv54p, a
value which is not extremely larger than unity.

First, we consider the variational case (a5b5n50).
Without forcing (F50) vortices are spontaneously forme
@Fig. 1~a!#. For large driving amplitude, vortices are subs
tuted by domains, separated by dark lines~Ising walls! @Fig.
1~b!#. For weaker forcings, lines become gray~Bloch walls!
@Fig. 1~c!# indicating that the order parameter does not v
ish at the interface@Eq. ~7!#. In the Bloch regime phase lock
ing is not perfect and walls tend to contain vortices~black
dots in the figure!, especially for weak driving. Our numeric
also confirm the relevance of the rocking parameterg
5 1

2 (F/v)2. For instance, forv54p ~the value used in Fig
1! the Ising-Bloch transition occurred forF58.060.1(g
50.20360.005), which is in a very good agreement with t
analytical predictiong51/5. The upper boundary of exis
tence of Ising domains wasF516.560.1 (g50.862
60.010), which agrees@within an O(v21) error# with the
analytical predictiong51. We also checked that thes
threshold values forF scale linearly withv, in agreement
with the functional dependence ofg on them. We remark
that phase domainsin two spatial dimensionsare transient

FIG. 1. Phase domains in the variational case (a5b5n50) as
obtained by numerical integration of the ac-driven CGLE~2! for
s511 andV54p. The side of the square integration region h
a lengthL558. Left column, intensity of the one-rocking–perio
average ofA ~black and white correspond to zero and maximu
intensity, respectively!. Right column, phase of the averaged ord
parameter.~a! F50 (g50), vortex ensemble att510. ~b! F
510 (g50.317), Ising walls att530. ~c! F55 (g50.079),
Bloch walls att530.
02660
u-

,

-

solutions of the forced CGLE~2! in this variational case, due
to curvature effects domains contract until a single ph
ultimately dominates.

Finally, we show results corresponding to the essentia
nonvariational casea510 (a@1 is typical of nonlinear op-
tics!. The null detuning casen50 is shown in Fig. 2. Again,
without driving a chaotic ensemble of vortices is observ
@Fig. 2~a!#. Typical for this predominantly dispersive case
that vortices are separated by shock waves. For sufficie
large rocking strength phase domains separated by Ising
walls appear similarly to the variational case~not shown!.
For a weaker rocking Bloch walls are observed@Fig. 2~b!#.
Differently from the variational case Bloch walls need not
closed, but can end abruptly. These walls are highly un
tionary exhibiting random evolution~snaking instabilities,
breakings, and reconnections! which is probably due to the
intrinsic motion of the Bloch wall related to its chirality in
nonvariational cases. Here, like in the variational case, b
Ising and Bloch domains contract and eventually disapp
For an.0, our simulations also confirm that extended p
terns can be excited. Ising-like labyrinths@Fig. 3~a!# as well
as Bloch-like labyrinths@Fig. 3~b!# are formed depending on

r

FIG. 2. Phase domains in the nonvariational casea510. L
5183. The rest of the parameters are as in Fig. 1.~a! F50 (g
50), vortex ensemble with shocks att560. ~b! F57 (g
50.155), Bloch walls att570.

FIG. 3. Labyrinths obtained forn50.6. The rest of the are pa
rameters as in Fig. 2. Plots correspond tot5170. ~a! F513 (g
50.54), Ising-like labyrinth.~b! F57.5 (g50.178), Bloch-like
labyrinth.
4-3
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the rocking strength. In the Bloch case the gray lines
reconnected in some places and also some vortices are
ible, indicating that phase is allowed to display smooth va
tions, although it is still partially quenched. Finally, a mo
outstanding result is obtained for values ofn between those
for labyrinths and those for contracting domains; the form
tion of spatial solitons~Fig. 4!.

FIG. 4. Spatial solitons obtained forn50.27 andF510 (g
50.317). The rest of the parameters are as in Fig. 3. Two st
solitons and two contracting domains are shown att5360. At t
51200 contraction ceases and the final distribution for this part
lar initial condition is four stable ring solitons~not shown!.
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The transformation of a complex system into a realli
one via rocking, as evidenced in this paper, can be espec
useful in nonlinear optics where phase domains and bist
phase solitons could be applied for the purposes of para
information processing. This is especially relevant in t
case of lasers, which can be driven at frequencies clos
that of lasing~the usual laser with injected signal!, i.e., in
their 1:1 resonance, but they are insensitive to drivings
other resonances. All these ideas could be well tested als
other self-oscillatory systems suitable to be driven on re
nance, like the Belousov-Zhabotinsky reaction@16#.
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