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Excitation of phase patterns and spatial solitons via two-frequency forcing of a 1:1 resonance
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We show that a self-oscillatory system, driven at two frequencies close to that of the unforced system
(resonance 1)1 becomes phase locked and exhibits two equivalent stable states of opposite phases. For
spatially extended systems this phase bistability results in patterns characteristic for real order parameter
systems, such as phase domains, labyrinths, and phase spatial solitons. In variational cases, the phase-locking
mechanism is interpreted as a result of the periodic “rocking” of the system potential. Rocking could be tested
experimentally in lasers and in oscillatory chemical reactions.
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The nature of patterns observed in dissipative nonlinear Although the mechanism we describe below is generaliz-
systems is deeply related with the degrees of freedom akble to other classes of complex systems, we focus on those
lowed to the system’s phase. From this viewpoint one camlisplaying a spontaneous transition between a steady and an
distinguish between phase invariant and phase-locked sysscillatory state, both spatially uniform. This transition is
tems, depending on whether the system’s phase is free or it {gchnically termed a homogeneous Hopf bifurcation, and
attracted towards certain discrete values. The mathematicgi,stems displaying it are complex since the phase of the
description of both types of systems is accordingly differentoscijations is not fixed. A classical way to break this phase
Phase invariant systems can be described _by a complex fieljgyariance is to submit the system toperiodic temporal
(the order paramet);rand the complex'Glnzburg-Landa'u forcing. This kind of forcing admits a universal description
and the complex Swift-Hohenberg equations are prototyplca‘}vhen the system is operated near the oscillation threshold,

models for them[1]. Among phase-locked systems, espe-, ¢, cing acts on a:m resonance, defined by the relation
cially relevant are those in which the phase is allowed to take

only two values(differing by ) so that the system supports “e (/M) (wo v) between the external forcing frequency
equivalent states of opposite signs. Hence, apart from a corf2e an_d the n_atur_al frequency_ of OSC'."a“O%' wht_eren/_m
an irreducible integer fraction andis a small mistuning.

stant phase factor, they can be described by a real ordé&t g .
parameter. Universal models for such systems are the red} Such case, the slowly varying complex amplitude of the

Ginzburg-Landau and the real Swift-Hohenberg equationgscilla_\tionsA (the order parametgverifies the following
[1]. A major difference between systems with complex orderequation[5]:
parameter(complex systems in the followingand systems
with real order parametéreal systemkis the kind of defects GA=(u+iv)A+(1+ia)VZA—(1+iB)|Al?A
supported by them. Vorticg®] are commonplace in com- Ak N1
plex systems, whereas they are not allowed in real ones. HFAT)T @
Similarly, real systems support domain wal& which on
the contrary are unstable and decay into arrays of vortices iwhere F is proportional to the amplitude of forcingy?
complex systems. Typical patterns of complex systems are 9+ 85 , andA, and the space coordinatesy) have been
ensembles of vortices and traveling waves, usually displayrormalized in order to make unity the diffusion and the satu-
ing a high degree of disorder. On the contrary, real systemgating nonlinearity coefficients. In E@l) all parameters are
tend to exhibit much more structured patterns, such as stripgsal and adimensionale is excitation parametefpropor-
(or labyrinthg, hexagons, domain walls, and dark-ring soli- tional to the increase of the control parameter from its value
tons. at the bifurcatioh, « is the dispersion coefficient, amglis a
Here, we address the problem of how to “convert” an nonlinear frequency shift coefficient. In the absence of forc-
initially complex system into a real-like one via forcing in a ing (F=0) Eq.(1) reduces to the complex Ginzburg-Landau
1:1 resonance. Apart from its interest from a fundamentaéquation(CGLE), which is the universal description of self-
viewpoint, this transformation could be useful for the exci- oscillatory systems close to thresh$ld5,6]. Actual systems
tation of phase domains and phase domain solitons in lasedescribed by the CGLE are, e.g., self-oscillatory chemical
and other phase invariant nonlinear optical systems, wheneactiond7] and nonlinear optical cavities, such as lagéis
such structures have potential applications for parallel inforand optical parametric oscillatof®]. A physical quantity,
mation processin{4]. such as a concentration in a chemical reaction or the electric
field in a laser, can be written in terms of the order parameter
as R&A(x,y,t)exd —i(wy+ v)t]).
*Email address: german.valcarcel@uv.es Next, we demonstrate that a self-oscillatdigomplex
TEmail address: kestutis.staliunas@ptb.de system can be transformed into a reallike one via resonant
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forcing. The idea is to drive the system with a spatially uni-wherea(x,y,t) does not depend on the fast time scale. The
form, amplitude modulated forcing almost in resonance withevolution equation foa(x,y,t) is found as a solvability con-
the natural frequency of oscillations, which is a generalizadition at ordero® of the asymptotic expansion, which reads
tion of the classical periodic forcing in a 1:1 resonance to a
quasiperiodic case. In particular, we consider a forcing
whose amplitude is slowly modulated in time in the form
F=Fycos(dt). Note that this is a two-frequency forcing

da=(\+ifa+(l+ia)Via—(1+ip)|al?a

+y(1+ip)a*, 4

since the actual forcing consists of two frequencieg;- ()

[10]. In this case, and close to the self-oscillation threshold

the system dynamics is governed by Ef). with m=n=1
(1:1 resonancgeand F= Fycos(2t) [11]. Upon definingo
=sgn), v'=vlul, A'=ANu|, t'=|ult, (x".y')
=\u[(x,y), 0=Q/|u|, F=Fol|u|*? (which is taken as
real and positive without loss of generajityand removing

the primes for the sake of not overburdening the notation

Eq. (1) becomes the following ac-driven CGLE:

OA=(o+iv)A+(1+ia)V?A—(1+ip)|A|?A+Fcog wt),
2

which is the object of our studjl2].

In order to visualize the effect of the two-frequency forc-

where \=0—2y, 0=v—2yB, and y=31f2=1(Fl/w)? is

the rocking parameter. To the leading order the actual order
parameter readA\(x,y,t) =2y sin(wt)+ia(xy,t) [EqQ. (3)].
Note that the one-rocking-period average of the order param-
eter (A(Xy,D))=UT[ITdUA(x,y,t")=ia(x,y,t), T
=2/ w, in this fast rocking limit.

Equation(4) is a CGLE with phase sensitive gailast
term), which favors a phase locking as it imposes the discrete
phase symmetra— —a. Thus, two equivalent states of os-
cillation of opposite phases exist. We note that K. is
similar to that describing oscillatory systems periodically
forced attwice their natural frequency of oscillatiof2:1
resonancg i.e., Eq.(1) with m=1 andn=2 [5].

For the sake of simplicity, we limit in the following to the

ing, we consider first the case of spatially uniform ordercases=0:

parameter and vanishing, B, and v. Then the forced
CGLE (2) is variational,dA/dt=—dV/9dA*, with potential
V=—o|A|?+ }|A|*—2 Fcos@t)ReA. In the absence of
forcing (F=0), V is isotropic on the plane Re-ImA; for
o=+1 (u>0), V has the shape of a sombrero, displaying
local maximum at the originthe unstable trivial staté
=0) and a degenerate minimum along the cirpd?=1
(the spatially uniform steady state with arbitrary phaser
a constant driving termR# 0, o=0; the classical periodic
driving in a 1:1 resonangé/ becomes “tilted” and exhibits
an isolated minimum on the axis Re Finally, for a periodic

a

da=(o—2y+iv)a+(1+ia)V2a—|al?a+ya*. (5)

Equation(5) has two relevant spatially homogeneous solu-
tions (apart from the trivial onea=0) given by a
==+|alexpie, |a|?=0—2y+\y?*—1? and sin2=uy.
Note that below the bifurcationu<0, i.e.,c=—1) |a|?
<0, so that rocking requires= +1(u>0) to be effective.
Hence, we consider in the following= + 1. These “rocked
states” have equal intensitida|? but opposite signs. They
exist for |V|<'y<%(2+\/1—3vz) that requiresv?<1/3.

forcing term F+0, w#0; the considered two-frequency 1he linear stability analysis of both the trivial and the

forcing) V undergoes a periodic tilting, or “rocking,” around
the axis ImA and the system state vectdr=(ReA,ImA)
oscillates back and forth across that axis. Sincedfer+ 1
the origin is repulsiveA avoids in principle, that point and
two equivalent trajectorie@iffering in the sign of ImA) are

rocked states of Eq5) shows that they are unaffected by
pattern forming instabilities fooev<0. Forav>0 they can
become unstable against spatial modulations of wave number
k given by ak?;,,=v—sgn(@)y/V1+a? and ak.=v
—sgn(a) V(1—27y)%+ v’/ {1+ a?, respectively(details will

allowed. Thus, two equivalent oscillating states of opposité?e given elsewhejeThus, forav<0 there exists bistability
phases are expected and, in principle, the initially compleXpetween the two oppositely phased spatially homogeneous
system is transformed into a reallike system. Given the “mefocked states, which enables the existence of domain walls
chanical” effect that the two-frequency forcing has on theconnecting them. Outstandingly in the variational case (
system’s potential, and in order to clearly identify it against=»=0) two kinds of such solutions to E¢5) for o=+1

the usual(single-frequencyperiodic forcing(corresponding

are analytical in one spatial dimension, and are known as

to w=0), we propose to term the forcing mechanism agsing (1) and Bloch(B) walls [14]

"rocking.”

Next, we show rigorously that the previous pictorial im-

a(x)= = gtanh(gx/y2), (6)

age holds even in the more general, nonvariational case. We

consider the limit of “strong and fast” rockingH=fw,®
>1) and keegf and the rest of parameters @§»°) quan-
tities[13]. This allows(i) to separate the slow time scdlef
the unforced system from the fast time scate wt of rock-

ap(x)=*[gtanh(y2yx) =i1-5ysectiy2yx)], .

whereg=\/1— . The Ising wall(6) shows up as a dark line

ing (d;— wd,+4d;), and(ii) to seek solutions to the forced (wherea,=0) and is stable for 15 y<<1. The Bloch wall

CGLE (2) in series of w of the form A(x,y,t)
=Ao(X,y,t,7)+O(w 1). At order w, we find

Ao(x,y,t,7)="fsin(7) +ia(x,y,t), 3

(7), a gray line, is stable for € y<1/5. At y=1/5 a bifur-
cation takes places and an Ising-Bloch transition is observed.
Both structures persist in nonvariational cases, at least for
small« andv, and the transition between them still occurs at
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FIG. 2. Phase domains in the nonvariational casel0. L
=183. The rest of the parameters are as in Fig(al.F=0 (y
=0), vortex ensemble with shocks &t=60. (b) F=7 (y
=0.155), Bloch walls at=70.

solutions of the forced CGLR) in this variational case, due
FIG. 1. Phase domains in the variational case-(3= »=0) as {0 curvature effects domains contract until a single phase
obtained by numerical integration of the ac-driven CG(J for  ultimately dominates.
o=+1 andQ=4m. The side of the square integration region had ~ Finally, we show results corresponding to the essentially
a lengthL=58. Left column, intensity of the one-rocking—period nonvariational case=10 («>1 is typical of nonlinear op-
average ofA (black and white correspond to zero and maximumtics). The null detuning case=0 is shown in Fig. 2. Again,
intensity, respectively Right column, phase of the averaged order without driving a chaotic ensemble of vortices is observed
parameter.(8) F=0 (y=0), vortex ensemble at=10. (b) F  [Fig. 2@)]. Typical for this predominantly dispersive case is
=10 (y=0.317), Ising walls att=30. (c) F=5 (y=0.079), that vortices are separated by shock waves. For sufficiently
Bloch walls att=30. large rocking strength phase domains separated by Ising-like
walls appear similarly to the variational cageot shown.
y=1/5 [14]. Differently from the variational case, Bloch FOr a weaker rocking Bloch walls are obsenjédg. 2(b)].
walls now move with a velocity proportional to their chiral- Differently from the variational case Bloch walls n_eed not be
ity [14]. qlosed, but can end abruptly. Thgse Wal!s are hlghl_y' unsta-
L[)pnary exhibiting random evolutiorisnaking instabilities,
reakings, and reconnectignshich is probably due to the
intrinsic motion of the Bloch wall related to its chirality in
nonvariational cases. Here, like in the variational case, both
o . Ising and Bloch domains contract and eventually disappear.
valu_e which is not_ extremely I_arger than unity. For «v>0, our simulations also confirm that extended pat-
First, we consider the variational case<S=v=0).  (oms can be excited. Ising-like labyrintfEig. 3a)] as well

Without forcing (F=0) vortices are spontaneously formed 4q Bioch-like labyrinth§Fig. 3(b)] are formed depending on
[Fig. X(@]. For large driving amplitude, vortices are substi-

tuted by domains, separated by dark lifissng wall9 [Fig.
1(b)]. For weaker forcings, lines become grdioch wallg
[Fig. 1(c)] indicating that the order parameter does not van-
ish at the interfac€Eg. (7)]. In the Bloch regime phase lock-
ing is not perfect and walls tend to contain vortigétack
dots in the figurg especially for weak driving. Our numerics
also confirm the relevance of the rocking paramejer
=1(F/w)?. For instance, fow=41 (the value used in Fig.

1) the Ising-Bloch transition occurred fdf=8.0+=0.1(y
=0.203+0.005), which is in a very good agreement with the
analytical predictiony=1/5. The upper boundary of exis-
tence of Ising domains wasF=16.5+-0.1 (y=0.862
+0.010), which agreepwithin an O(w 1) error] with the
analytical predictiony=1. We also checked that these  [iG, 3. Labyrinths obtained for=0.6. The rest of the are pa-
threshold values foF scale linearly withw, in agreement rameters as in Fig. 2. Plots correspondtte170. (a) F=13 (y
with the functional dependence af on them. We remark =0.54), Ising-like labyrinth.(b) F=7.5 (y=0.178), Bloch-like
that phase domains two spatial dimensionsre transient labyrinth.

These analytical predictions were tested against the n
merical integration of the forced CGLE2), with o=+1
[15]. In order to give evidence of the robustness of rocking,
we show next results for a rocking frequenay=4m, a
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The transformation of a complex system into a reallike
one via rocking, as evidenced in this paper, can be especially
useful in nonlinear optics where phase domains and bistable
phase solitons could be applied for the purposes of parallel
information processing. This is especially relevant in the
case of lasers, which can be driven at frequencies close to
that of lasing(the usual laser with injected sigpal.e., in
their 1:1 resonance, but they are insensitive to drivings on

FIG. 4. Spatial solitons obtained far=0.27 andF=10 (y ~ other resonances. All these ideas could be well tested also in
=0.317). The rest of the parameters are as in Fig. 3. Two stablgiher self-oscillatory systems suitable to be driven on reso-

solitons and two contracting domains are showrt=aB60. ALt an0e jike the Belousov-Zhabotinsky reactfds).
=1200 contraction ceases and the final distribution for this particu-

lar initial condition is four stable ring soliton®ot shown. We are grateful to E. Rolamand C. O. Weiss for their
remarks and critical reading of the manuscript. We acknowl-
the rocking strength. In the Bloch case the gray lines aredge financial support from the Spanish-German cooperation
reconnected in some places and also some vortices are vigrogram “Acciones Integradas Hispano-Aleman&Btoject
ible, indicating that phase is allowed to display smooth variaNo. HA1997-0130 and ESF Network PHASE. G.J.deV. ac-
tions, although it is still partially quenched. Finally, a most knowledges financial support from the Spanish Government
outstanding result is obtained for valuesiwobetween those (DGES Project No. PB98-0935-C03J02nd K. S. acknowl-
for labyrinths and those for contracting domains; the forma-edges financial support from Sonderforschungbereich 407 of

tion of spatial solitongFig. 4). Deutsche Forschungsgemeinschatt.
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